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ABSTRACT

This paper proves the assertion that if positive invertible operators A and B satisfy an operator inequality

.
25—

t S-t S-t t
(BEATBS_tATBE) "> Bfor0 < t <§, then by A = B, if s< 2 — t.If s= 2+t is additionally assumed then A = B. A

preliminary result Theorem 2 of J.J Fuji, M. Fuji and R. Nakamoto (FFN)[1] is further generalized in Theorem 3.
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1. INTRODUCTION

We use a capital letter to denote an operator. An operator means a bounded linear operator acting on a Hilbert
space H. An operator A on H is said to positive in (in symbol: A= 0) if (Ax, x)= 0 for all x € H and strictly positive (in
symbol: A>0) if A is positive and invertible. The usual order A = B for self-adjoint operators A and B on H is defined as

(Ax, x) =2 (Bx, x) forall x € H.

The well known Lowner — Heinz inequality finds its extension in some other well-known inequalities like Furuta
inequalities [2] for usual order, and its further extension under the Chaotic order first discussed by T. Ando [3] and then by

M. Fuji [4]. Furuta [2] relaxed the restriction p€ [0, 1] as an extension of (LH) which is as follows:
Theorem (LH): Lowner — Heinz inequality
A=2B =>AP = BP
If and only if p € [0, 1].
Theorem F. Furuta inequality:

A > B = 0 assures

p+2r

1
A @ = (A"BPAT)a (1.2)

and
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p+2r

1
(B"TAPB™)a>B a (1.3)
hold forr > 0,p = 0 and q = 1 with
(1+2r)q=p+2r (1.4)

The following theorem by M. Fujii, T. Furuta and E. Kamei (FFK) [5] is equivalent to Furuta inequality from the

viewpoint of Kamei’s satellite theorem [6] and Uchiyama’s work [7].
Theorem FFK. The following statement (1)—(3) are mutually equivalent for A, B >0
* log A >=logB

1
2

+ AP 2 (AZBPAZ)forp= 0
+ A7 2 (A3BPAZ) forp.r2 0.

We consider the following operator inequality:

1
s s-t S—

s st S=t_S\2s
(B2azBtaA=Bz)" 2B (1.5)
for the operators A, B = 0 As an application of Daleckii-Krein formula (see [8]) for the derivative of matrix-

valued function, one of the authors in [5] proved that if matrices A, B satisfy (1.5) for t > 1 and s =1, then logB = logA.

FFEN[1] proved further that the usual order B > A follows under certain restrictions on s and t. The theorem is as

follows:

Theorem FEN[1]. If A, B> 0 satisfy the inequality (1.5) i.e.

1

(A7 B4 B2)" = B

for some t> s > 0. Then the following assertions hold:
* Ift>3s—2 = 0thenlogB > logA, and if the additional condition t > s + 2 is assumed, then B > A.
e IfO<s <§, then logB > log A and if the additional condition t > s + 2 is assumed then B > A.

2. A PRELIMINARY RESULT FOR THE CHAOTIC ORDER

As a preliminary result the authors FFN[1] generalized a result announced by one of the authors in [5] which is as

follows:

Theorem1.If positive definite matrices A, B > 0 satisfy

1 1-t 1

1 1-t 1t 1\
(B2a=BlAzB:) 2B
for all t > 1, then log B >logA.

The generalized result of FFN[1] is as follows:
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Theorem?2. For positive definite matrics A, B > 0, if there exists a, § such that « + f = 1 and

1
-t a+ft\2

a+pft 1-t 1
(B RN AT N ) >B

for all t > 1, then log B > log A.
We further generalize Theorem 1 using the techniques of FFN[1] as follows
Theorem 3. If the positive definite matrics A, B > 0 satisfy

1
—ta+(1+21)3  1-t 1-r  —ta+(1+21)8 \2

B 2 ATB—t,B+(1+21)aA7B 2 >B

fora + f = 1 and for all t > 1, then logB=logA.

—ta+(1421)B 1t 1~ —ta+(1+21)B
. ctarz)p 1 1 zaH(iv2n)f
Proof Let f(x) =xz, F) =B *2 A?B Be(2)a g2 g and U, be matrices such that

U;F(l‘) Ut = D(Z) = diag (dl (t) yeeernenenens R dn (I)) , diagonal matrices. We recall the Daleckii — Krein formula

for the derivative of matrix-valued function which is as follows:

IED (2 (., ()00 P00, )

Where 0 stands for the Hadamard-Schur product and fm (x, y) is the divided difference

f(x)-£(5)
fMxy)=3 x-y
f(x), ifx=y

, ifx#y

Let B itself be a diagonal matrix diag(d;), so U,=I, the identity matrix. Hence at t=1, we have

df(F) — [1] 2 2 ,
_ET%U_f(i”%me

d —d, 1

2 2 |7
d’-d> ) \d+d

And(f[l] (df,dj)) =

It follows that

~ta+(1+21)B 1~ —ta+(1+21)B

. —1a+(1+21)8 _ - -
F(t) =B 2 (log B)(%MJA 2 B—t/?+(1+21)aA 2 B 5
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—ta+(1+21)3  1-t 1~ —ta+(1+21)B

+B 5 ATB—t,B+(1+21)a (lOg B) B—,B+2aA7B )

—ta+(1+20)8 11 1t —ra+(1+20)8 _
+ B D) A2 B—z/?+(1+21)aA 2 B 2 (log B)( a;Zﬂj

—ta+(1421)3  1-t 1=+ —ta+(1+21)B

B 2 A?(logA)B#a2p 2

N | =

1 —ta+(1421)3  1-t —ta+(1+21)B

1~ 1~
- B A2 BN (1og A)B 2

(2,[; _ a) B(—a+3ﬁ)+(_18+3a)+(—a+3,8)

- F(l) = (log B) 5 2 2

(~a+38) N +( a+3p)
—-—.logA.B 2 Coway==
(-a+38) . +(—0/+3,B)
——logAB 2 Chmal
(28-a) (28-a)| ., 1.} 212 >
=logB T+(2a—ﬂ)+T B —EBz(logA)Bz—EBz(logA)Bz

1

1

B2 (B(log B-log A) + (logB —log A)B)B2
1 1 1

:E(LB +RB)[B2 (logB —logA)BZJ

= %((di + dj))O(B; (logB —log A) B;]

ast —1, so we have
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@(1) = (f“] (d,.,dj)oﬁ(l)j

1 1
di+dj 0 %((d,.+dj))o B (logB ~log A) B?

1

1
= % B? (logB —log A) B?

On the other hand, since

—1a+(1+20)f 1 1=t —ta+(1+21)8
df (F) . BfATB—tEﬂHZt)aATB 2 -B
—(1) =lim
dt t-1 r—1

1 1
Weobtain B2 (lOgB - log A) B?>0,i.e. logB >logA
3. MAINRESULT

The operator inequality (1.5) is the generalized form of the Furuta inequality. Taking Furuta inequality at the base

we generalize Theorem 3 for the two variables in the following theorem.

Theorem4. Let A, B > 0 satisfy the inequality

r st st \2g-1

B2A2B A2 B2 > B (1)

S
forO<t <E, Then logA 2 logB if s< 2 — t if an additional condition s 22 + t is assumed then A 2 B.

Proof. By the Furuta inequality, We have, A 2B 20 assures
! prar
(BA"B") 2B ¢ @)
forr 2 0,p 2 0and q 2 1 with (142r)q 2 p+2r.
Since A,B>0 satisfy inequality (1), we have from Furuta inequality (2) for p = 2s-t, 2r = s - 2t
s—2t+1

s=2t t st s=tt s=2t \3(g5—¢

B2 B:A2B A2 BB ? > g2t
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[+2r _2s—t+1  p+2r
= and

<[+2r=2s—-t+1
q pt2r 3(s—t) q

2(s—21+1)
STt ST 3(s-r)
2

B 2 > B‘Y—2t+1

st
2

A

as s<2-t, we have s-3t<2-4t and consequently 3(s-t) < 2(s-2t+1) i.e. 2‘(;(_%? >1.

So we have

It implies that logA 21ogB by s > t and operator monotonicity of logarithmic function. Moreover if s 2 2+t then

T 2] and so A=B by Lowner-Heinz theorem.
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